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Spike-phase coupling of subthalamic
neurons to posterior perisylvian cortex
predicts speech sound accuracy

Matteo Vissani 1,2 , Alan Bush1,2, Witold J. Lipski3, Latané Bullock1,2,4,
Petra Fischer 5, Clemens Neudorfer 1,2, Lori L. Holt 6, Julie A. Fiez 7,
Robert S. Turner 3 & R. Mark Richardson 1,2

Speech provides a rich context for understanding how cortical interactions
with the basal ganglia contribute to unique human behaviors, but opportu-
nities for direct human intracranial recordings across cortical-basal ganglia
networks are rare. Here we have recorded electrocorticographic signals in the
cortex synchronously with single units in the basal ganglia during awake
neurosurgeries where participants spoke syllable repetitions. We have dis-
covered that individual subthalamic nucleus (STN) neurons have transient
(200ms) spike-phase coupling (SPC) eventswithmultiple cortical regions. The
spike timing of STN neurons is locked to the phase of theta-alpha oscillations
in the supramarginal and posterior superior temporal gyrus during speech
planning and production. Speech sound errors occur when this STN-cortical
interaction is delayed.Our results suggest that timely interactions between the
STN and the posterior perisylvian cortex support auditory-motor coordinate
transformation or phonological working memory during speech planning.
These findings establish a framework for understanding cortical-basal ganglia
interaction in other human behaviors, and additionally indicate that firing-rate
based models are insufficient for explaining basal ganglia circuit behavior.

In everyday conversation, humans produce speech with remarkable
accuracy and speed. Fluent speech requires the coordination and
sequentialmovement of oral articulators on the order ofmilliseconds1,2.
Brain networks with both cortical and subcortical nodes subserve the
coordination of speech3. Cognitive neuroscience has made significant
progress in refining the cortical speech-motor control network deli-
neated by non-invasive imaging4,5 using invasive recordings of the lat-
eral perisylvian cortex2,6. However, less is known about the subcortical
contributions to speech, especially how different nodes in the network
transmit and share information.

The cortico-basal ganglia network is a structural foundation for
supportingmotor control7,8, includinghumanorofacialmotor control for
speech. Studies of speech and neurological speech impairments strongly
support the idea that basal ganglia play a role in speech production.
Positron emission tomography and functional magnetic resonance ima-
ging have shown basal ganglia nuclei activation during speech produc-
tion tasks9–12 and have suggested a role of basal ganglia in timing, rhythm
control, and prosody13–16. Clinical observations in patients with basal
ganglia lesions or diseases affecting the basal ganglia bolster the findings
from basic neuroscience. Lesions to adult basal ganglia can induce

Received: 21 June 2024

Accepted: 28 March 2025

Check for updates

1Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA. 2Harvard Medical School, Boston, MA, USA. 3Department of Neurobiology,
Systems Neuroscience Center and Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. 4Program in Speech and
Hearing Bioscience and Technology, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA. 5School of Physiology, Pharmacology &
Neuroscience, University of Bristol, Bristol, UK. 6Department of Psychology, The University of Texas at Austin, Austin, TX, USA. 7Department of Psychology,
University of Pittsburgh, Pittsburgh, PA, USA. e-mail: mvissani@mgh.harvard.edu; mark.richardson@mgh.harvard.edu

Nature Communications |         (2025) 16:3357 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-3908-7620
http://orcid.org/0000-0002-3908-7620
http://orcid.org/0000-0002-3908-7620
http://orcid.org/0000-0002-3908-7620
http://orcid.org/0000-0002-3908-7620
http://orcid.org/0000-0001-5585-8977
http://orcid.org/0000-0001-5585-8977
http://orcid.org/0000-0001-5585-8977
http://orcid.org/0000-0001-5585-8977
http://orcid.org/0000-0001-5585-8977
http://orcid.org/0000-0002-3153-1045
http://orcid.org/0000-0002-3153-1045
http://orcid.org/0000-0002-3153-1045
http://orcid.org/0000-0002-3153-1045
http://orcid.org/0000-0002-3153-1045
http://orcid.org/0000-0002-8732-4977
http://orcid.org/0000-0002-8732-4977
http://orcid.org/0000-0002-8732-4977
http://orcid.org/0000-0002-8732-4977
http://orcid.org/0000-0002-8732-4977
http://orcid.org/0000-0003-1090-2481
http://orcid.org/0000-0003-1090-2481
http://orcid.org/0000-0003-1090-2481
http://orcid.org/0000-0003-1090-2481
http://orcid.org/0000-0003-1090-2481
http://orcid.org/0000-0002-6074-4365
http://orcid.org/0000-0002-6074-4365
http://orcid.org/0000-0002-6074-4365
http://orcid.org/0000-0002-6074-4365
http://orcid.org/0000-0002-6074-4365
http://orcid.org/0000-0003-2620-7387
http://orcid.org/0000-0003-2620-7387
http://orcid.org/0000-0003-2620-7387
http://orcid.org/0000-0003-2620-7387
http://orcid.org/0000-0003-2620-7387
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-58781-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-58781-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-58781-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-58781-8&domain=pdf
mailto:mvissani@mgh.harvard.edu
mailto:mark.richardson@mgh.harvard.edu
www.nature.com/naturecommunications


stuttering17,18, articulatory impairments19, and dysprosody20. Individuals
with amutatedFOXP2gene—which is thought toprimarily affect neurons
in the basal ganglia21—experience apraxia of speech along with linguistic
and grammatical impairments, despite normal intelligence andhearing22.
Approximately 90% of patients with Parkinson’s disease (PD), whose
most severe cardinal motor symptoms stem from basal ganglia pathol-
ogy, suffer from a speech disorder known as hypokinetic dysarthria23–25.

Deep Brain Stimulation (DBS) of the subthalamic nucleus (STN), a
key basal ganglia node, reliably improves gross motor symptoms in PD,
but its effects on speech are poorly understood. There is currently no
consensus on why STN-DBS leaves speech unaffected or mildly
improved in some patients26–32 but contributes to speech decline in
others30,33–36. Recordings from awake DBS surgeries offer a rare window
to study the interactionsbetween theSTNandcortexduring speech.The
discovery of single unit37–42 and population level43,44 activity in the STN
that tracks multiple aspects of speech production41,45–47 and emerging
evidence for anatomical48 and functional connectivity49 between the STN
and sensorimotor and auditory cortical areas, raises the question of how
STN and cortex interact to mediate speech-related behavior.

We established an intraoperative DBS protocol to simultaneously
record local field potentials (LFPs) from high-density electro-
corticography (ECoG) strips over speechcortex and single-unit activity
from microelectrodes in the STN while PD patients completed a syl-
lable repetition task41,42,45,46,48,50. This paradigm allowed us to study
cortico-subcortical spike-phase coupling (SPC), which measures the
degree to which spikes occur more often at certain phases of cortical
oscillations. Importantly, SPC reveals inter-region coupling beyond
changes in single-neuron firing rate or LFP oscillations power51–54. We
tested the hypothesis that inter-areal SPC between STN neurons and
cortical regions is modulated during the planning and execution of
speech. We found that STN neurons phase-locked to cortical oscilla-
tions during short time intervals, which we call transient spike-phase
coupling (t-SPC) events. Individual STN neurons had a preferred fre-
quency at which they phase-locked to cortical LFPs: either in theta-
alpha frequency band or in the beta frequency band. Furthermore, the
cortical sites these STN units coupled to were spatially segregated;
theta-alpha t-SPC events clustered over posterior perisylvian cortex
(supramarginal gyrus (SMG) and superior temporal gyrus (STG)), while
beta t-SPC events concentrated over sensorimotor cortex (precentral
gyrus (PreCG) andpostcentral gyrus (PostCG)). Participantsweremore
likely to make substitution and omission speech errors on trials with
lower, delayed theta-alpha t-SPC events. Thus, we discovered a tem-
porally resolved,mechanistic characterization of cortical-basal ganglia
interaction during speech production that furthers our understanding
of information coding in the cortico-basal ganglia loop.

Results
We studied intracranial recordings in 24 English-speaking participants
(see Table S1 for clinical details) undergoing STN-DBS surgery for the
treatment of Parkinson’s disease. High-density electrocorticography
(ECoG) across the left ventral sensorimotor cortex, STG, and inferior
frontal regionswere recorded simultaneously with single-neuron activity
from the STN (Fig. 1A). Following the presentation of an auditory cue of a
syllable triplet comprised of three unique phonotactically legal
consonant-vowel (CV) syllables, participants were instructed to repeat
the syllable triplet (speech production) at their own pace into an omni-
directional microphone (64 recording sessions, 2.67 ±0.62 sessions,
379.88 ±99.49 trials on averageacrossparticipants) (Fig. 1B). Participants
produced the CV-CV-CV sequences in 1.35 ±0.41 s with a phonetic accu-
racy of 56.4 ± 26.9% (a triplet was considered inaccurate if any phoneme
was off-target). Phonetic errors included consonant substitutions, such
as the transformation of plosives into fricatives (e.g., /g/->/v/) and vice-
versa (66.3 ± 20.7%), vowel substitution (8.1 ± 11.6 %) and omissions
(25.7 ± 19.9 %) (Fig. S1 and Source Data). We did not observe an effect of
the syllable position in the triplet on phonetic error frequency. Trained

speech-language pathologists annotated articulatory and voice features
of each phoneme production (see Supplementary Text). All participants
displayed some extent of articulatory imprecision (6.8 ± 5.3% across
phonemes) and creaky voice (3.24 ± 5.7 % across phonemes) (Table S2).

Cortical potentials and subthalamic firing rates during speech
production
Before addressing the complex interactions between cortical LFPs and
STN single-neuron firing during speech, we analyzed each of the signals
independently. We decomposed cortical LFPs from the lateral temporal
and frontal cortex into time-frequency representations using Wavelet
basis functions. We inspected LFP spectral components from 4 to
140Hz. The expected cortical evoked activity was observed during both
listening (locked to auditory cue onset) and speech production (locked
to speech onset) (Fig. 1)55–57. Figure S2 illustrates different patterns of
evoked activity in five representative electrodes from four participants.
Spectrograms demonstrated consistent neural suppression in lower α–β
frequencies (8–30Hz) as well as elevation in the γ range (50–150Hz)
during auditory cue presentation and speech production. β power sup-
pression was a ubiquitous phenomenon occurring across time and not
temporally specific toprocesses related solely to speech. A large fraction
of STG electrodes displayed either transient or sustained increased
γ–activity in response to auditory cues58. In line with previous work45,57,
PreCG and PostCG showed γ–elevation preceding speech onset and
during speech production, which likely reflects speech-related proces-
sing. The same channels demonstrated above-baseline β increase (i.e.,
rebound) after the speech offset. Our data also revealed more complex
response profiles, such as γ–activation of STG electrodes during speech
(Fig. S2), consistent with the role of STG during auditory feedback56,59.

From STN microelectrode recordings, we identified 245 neurons.
211 were stable and isolated (Fig. 1D shows recording density, on
average 3.28 ± 1.25 neurons per recording session). Spike sorting and
quality metrics were conducted as previously described41,52. We found
neurons’ instantaneous firing rates during the speech task were, as
expected, heterogeneous both within and across recording sessions
and patients (Fig. 1D). N = 84/211 neurons (40%) exhibited a significant
increase in their firing rate in awindow around the speech onset. Other
neurons (N = 37/211, 18%) displayed a decrease in their firing rate.
Interestingly, N = 23/211 neurons (11%) showed mixed behavior with
both increased and decreased firing rates. The remaining neurons
(N = 67/211, 32%) did not exhibit a significant modulation of firing rate
during the speech production task. STN neurons with distinct firing
rate modulations were not significantly spatially segregated within the
STN, as assessed by comparing the average distance between these
neuron categories against a null distribution of distances based on our
sampling of recording sites (all pperm >0.05). For a comprehensive
description of firing rate modulation in this dataset, see Lipski et al.42.

STN neurons lock transiently in a specific frequency band with
cortical LFPs
Our preliminary analyses above showed that cortical LFP spectral
power and STN firing rates were task-modulated. However, neuronal
networks encode information with complex multivariate interactions,
beyond what is found in power and firing rate changes52,54. Our
simultaneous recordings at two different nodes in the cortical-basal
ganglia loop allowed us to probe these network interactions. Do STN
neurons consistently fire at a certain phase of cortical LFPs during
speechplanning and production? And if so, what is the duration of this
spike-phase interaction? To address these questions, we used a
variable-window width SPC estimation that provides an unbiased,
time-resolved estimate of the strength of SPC across multiple fre-
quencies (4–140Hz) over the entire duration of the task, overcoming
the limitations of traditional event-locked analyses that maximize the
temporal precision only around a single event of interest (Fig. 1E). We
set a target SPC temporal resolution of 50ms, resulting in a series of
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anchor points between contiguous behavioral events. We then adjus-
ted window widths (target number of 0.15 s) around those anchor
points to account for variability in the number of spikes during low and
high firing rate periods, resulting inmore accurate and less biased SPC
estimates (please refer to “Methods” and Supplementary Text for
details). The averagewindowwidthwas 0.15 ± 0.01 s (acrosspairs)with
an average number of 350± 169 spikes across trials per window.

We obtained 19755 time-frequency SPC maps, with each map
representing an STN neuron-cortical LFP pair. Maps specified SPC in
frequency, from4 to 140Hz, and in time: from0.75 s before the auditory
cueonset to0.75 s after speechproduction termination.Neuronshadon
average ~93 ± 33 cortical LFP pairs. Table S3 contains details about the
number of pairs, participants, STNneurons, andECoGcontacts included
in the main analysis. Cluster-based permutation tests revealed that ~11%
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(2148/19755) of the time-frequency maps displayed significant SPC. The
distributionof thepercentageof significantSPCpairs acrossparticipants
is illustrated in Fig. S3.

When averaging only SPC maps (N = 2148) that were significant at
the single-pair level, we observed SPC primarily in two distinct fre-
quency ranges. STN neuron spiking uncoupled with cortical β
(13–21 Hz) with respect to baseline starting at auditory cue presenta-
tion and persisted throughout speech production (Fig. 2A). After
speech offset, STN spikes increased in β SPC beyond baseline, con-
sistent with movement-offset β LFP power rebound60. During the
speech production interval, tonic (θ–α)-SPC below 10Hz became a
prominent feature (Fig. 2A). Notably, these results were consistent
whether we averaged all SPC maps (N = 19755) or the most significant
SPC map for each unit (N = 211) (Fig. S4 and Source Data).

We next sought to investigate the extent to which single-pair SPC
maps accurately reflect the group-level SPC patterns observed during
prolonged SPC changes. Strikingly, single-pair SPC maps showed that
STN neurons locked to cortical LFP phases during transient episodes
(Fig. 2B), which we termed t-SPC event. Althoughmost significant SPC
maps exhibit only one t-SPC (78%, 1682/2148), we also found examples
with multiple (up to seven) t-SPC events, which can occur during dif-
ferent key events of the task and in different frequency bands
(Fig. 2B, C). Thus, periods of increased or suppressed group-level SPC
reflect the type of t-SPC event most likely to occur.

We then characterized the task-related timing and frequency
centroid of t-SPC events to test whether STN neurons display speech-
related frequency-specific SPC. Our analysis revealed that t-SPC events
had a median duration of 0.268 s and occurred most frequently in the
β range (~16Hz) (Fig. 2D). We observed a mild negative correlation
between t-SPC duration and t-SPC frequency centroid (R2 = 0.12
(ρ = −0.35), p < 0.001), suggesting that STN spiking is more likely to
lock to low-frequency cortical oscillations for longer periods of time.
Figure 2E lists all the t-SPC events ordered by frequency band. θ–α
t-SPC events significantly aggregate during speech production
(pperm < 0.05, permutation test) (Fig. 2F). Notably, α t-SPC events
occurred throughout the entire speech production duration, whereas
θ t-SPC events signaled preferentially the final part of the utterance.
Moreover, α t-SPC events decreased during the auditory cue pre-
sentation (pperm < 0.05, permutation test). β t-SPC events were more
prominent during the baseline, dipped during both auditory cue pre-
sentation and speech production, and rebounded above baseline
levels after the termination of the utterance (pperm <0.05, permutation
test). Neither γL nor γH t-SPC event occurrence showed prominent
deviation from uniform distribution during the task.

We observed that SPC strengthwas frequency-band specific at the
individual pair level (Fig. 2G). We tested whether this specificity was
also evident when we aggregated t-SPC events at the single-neuron
level. In otherwords, weexamined the relationshipbetween frequency

bands for neurons that hadmultiple t-SPC events: if a neuron coupled
in one frequency band, was it more or less likely to couple in another
band? To do this, we calculated a t-SPC index for each neuron, defined
as the ratio of t-SPC events to pairs, and used an entropy-basedmetric
to quantify the frequency specificity (please see Fig. S5). In general, we
employed the t-SPC index for all analyses throughout the manuscript
in which the neuron was the statistical unit of observation. A striking
proportion of units (N = 203/211 96%, frequency specificity ~0.56
higher than chance level: 0.08)was significantly specific to a frequency
band. Finally, neurons that exhibited increased θ–α t-SPC index did not
show any modulation of β SPC index, and vice-versa (Fig. S6).

We confirmed that t-SPC events observed in our data were not a
by-product of the natural cluster tendency arising in small samples of
randomdistribution.We evaluated the number of cycles of oscillations
spanned by t-SPC events and the count of potential t-SPC events
observed in the permuted SPC maps, previously used to convert the
SPC maps into z-scores (see “Methods”). We used two cycles as the
lower bound for a well-defined SPC event, as is commonly chosen in
LFP oscillatory base analyses for β bursts61,62. Ninety-nine percent of
t-SPC events hadmore than two cycles (on average eight cycles). There
were ~10 timesmore t-SPC events in the actual SPCmaps compared to
the shuffled SPC maps (pperm <0.001, permutation test across all fre-
quency bands) (Fig. S7 and Source Data). These control analyses sug-
gest that t-SPC events reflect genuine, physiological SPC mechanisms.

In summary, neurons tended to spike-phase couple to cortical
LFPs transiently (for 0.25 s) and in a single frequency band. Neurons
that coupled in multiple bands coupled in the θ and α range; these
neurons seemed to couple toθ andα indiscriminately. Consequently, θ
and α coupling were treated as a single entity in some analyses
throughout the manuscript.

STN-cortical spike-phase coupling is spatially organized and
changes across task epochs
Previous studies have shown that neural activity in the cortex and STN
feature spectral topographies during resting state63,64 and movement
execution65,66. Consistent with these findings, when we grouped SPC
maps by cortical regions of interest (ROIs), we observed qualitatively
distinct SPC patterns (Fig. S8). We extracted two t-SPCmetrics to better
delineate the spectral topography of the cortico-subcortical SPC during
speech production. First, we quantified the spatial density of t-SPC
events as the percentage of t-SPC events to total pairs, calculated sepa-
rately at both the cortical and STN levels (see Fig. S5).We then compared
this spatial density to a null distribution to identify ROIs with a sig-
nificantly high or low prevalence of t-SPC events (Fig. 3A). Second, we
characterized the temporal occurrence of t-SPC events, defined as the
likelihood of observing at least one t-SPC event in each STN neuron-
ECoG contact pair, across time and frequency band. Similarly, we tested
t-SPC temporal occurrence against a null distribution to identify

Fig. 1 | Quantification of STN-cortex spike-phase coupling during an intrao-
perative syllable triplet repetition task. A Illustration of the syllable triplet
repetition task. Participants were instructed to repeat unique consonant-vowel
(“CV”) syllable triplets (magenta). The auditory stimuli were presented through
earphones (black). High-density electrocorticography (ECoG) strips were placed in
auditory and sensorimotor areas through the burr hole (cyan). Microelectrode
recordings were acquired in the subthalamic nucleus during functional mapping
(purple). Spectrograms of the audio signals are shown. B Timing of behavioral
events, relative to speech-onset. Heatmap of the duration of the auditory cue (AC)
and speech production (SP) windows expressed as a percentage across trials for
each participant. The average phonetic accuracy of the produced syllables for each
participant is shown on the right. C ECoG strips localizations. The coverage of the
ECoG strips across participants is superimposed on three different target areas
from the Destrieux atlas26: postcentral gyrus (purple), inferior frontal gyrus (blue),
and superior temporal gyrus (green). Exemplary auditory-locked and speech-
locked spectrograms of activity in the postcentral gyrus (purple sphere) and

superior temporal gyrus (green sphere) after normalization with respect to the
baseline are displayed. D MER localization. Coverage of single units across parti-
cipants is depicted in grayscale on the STN surface. Spheres denote the location of
four exemplary neurons with different categories of instantaneous firing rate (IFR)
modulation: Increasing (red), Decreasing (blue),Mixed (green), andNo (gray) firing
ratemodulation. The plots show the percentage change in instantaneous firing rate
(IFR) relative to baseline during the speech production window (indicated by the
magenta vertical dashed line). The horizontal black line represents the mean IFR
across trials, while the gray shaded area denotes the standard error of the mean
(SEM). Colored patches highlight time bins with significant firing rate modulation
(refer to “Methods” for details).E Exemplary transient spike-phase coupling in theα
range during the speech production window (magenta dashed line). Spike time-
stamps, α oscillations, and instantaneous phase are illustrated. Magenta bars
delineate the duration of the syllable triplet. ITI inter-trial interval used as baseline,
AC auditory cue, SP speech production, IFR instantaneous firing rate.
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significant windows of aggregation (high overlap) or dispersion (low
overlap) of t-SPC events (Fig. 3B, see “Methods” for details).

At the cortical level across all frequency bands, most t-SPC events
were detected in the PostCG (17% significant pairs, t-SPC spatial den-
sity = 26%, pperm < 0.05, permutation test) and SMG (13% significant
pairs, t-SPC spatial density = 18.45%, pperm < 0.05, permutation test).
Significant numbers of t-SPC events were found also in the STG (14%
significant pairs, t-SPC spatial density = 15%), PreCG (11% significant

pairs, t-SPC spatial density = 14%) and subcentral gyrus (SCG, 11% sig-
nificant pairs, t-SPC spatial density = 16%), but t-SPC spatial density was
lower in the middle and inferior frontal areas (Fig. 3A).

We observed aggregation (i.e., high occurrence) of θ t-SPC events
during speech production in SMG and STG (pperm <0.05). Similarly, α
t-SPC events dispersed (i.e., low occurrence) during auditory cue
presentation and aggregated during speech production in SMG and
STG regions, in addition to other areas such as PreCG and PostCG

A B

D

Fr
eq

ue
nc

y 
[H

z]
 

0.7

-10

0

10

Time from SP onset [s]

AC 
offset

10

100

10

100

0 1.3-0.6-2

AC 
onset

SP
offset

0

PP
C 

[z
-s

co
re

]
t-s

ta
t 

Group level (N= 2148 pairs)

SP
onset

Single pairs

10

100

10

100

10

100

Time from SP onset [s]

Fr
eq

ue
nc

y 
[H

z]
 

2.5

-2.5

PP
C 

[z
-s

co
re

]

AC 
offset

AC 
onset

SP
offset

SP
onset 1 s

10

100

1 s Dt-SPC

1 2 3 4 5 6 7
 # t-SPC events

0

500

1000

1500

2000

 #
 p

ai
rs

 10

100

2.5

-2.5

PP
C 

[z
-s

co
re

]

t-SPC duration and frequency

0

500

1000

1500

2000

2500

3000

f           [Hz]t-SPC

t-S
PC

 [i
d]

 (2
98

7 
ev

en
ts

)

AC 
offset

AC 
onset

SP
offset

SP
onset

Time from SP onset [s]
0 1.3-0.6-2

0 100

0 0.5 1 1.5 2
0

0.02

0.04

 P
D

F
 

   0.268 s 

t-SPC duration [s]

15.81 Hz

0

0.02

0.04

 P
D

F
 

10 100
t-SPC frequency [Hz]

Time from SP onset [s]
0 1.3-0.6-2

AC 
offset

AC 
onset

SP
offset

SP
onset

0

1

0.5

0

2

0

4

8

0

2

t-S
P

C
 o

cc
ur

re
nc

e 
[%

] 

t-SPC event definitionC

E F

2

0

5 20 60

t-SPC frequency relationship across pairsG

PP
C 

[z
-s

co
re

]

2 80 4 6
PPC [z-score]

2 80 4 6
PPC [z-score]

2 80 4 6

0

0.5

1

1.5

PP
C 

[z
-s

co
re

]

0

0.5

1

1.5

PP
C 

[z
-s

co
re

]

0

0.5

1

1.5

PPC [z-score]

0 0.2 0.4 0.6 0.8 1

Frequency-Specificity (N = 211 neurons)
25%

25%

50%
100%

Theta vs alpha spike-phase coupling (N=19755) Theta vs beta spike-phase coupling (N=19755) alpha vs beta spike-phase coupling (N=19755)

ft-SPC

Article https://doi.org/10.1038/s41467-025-58781-8

Nature Communications |         (2025) 16:3357 5

www.nature.com/naturecommunications


(pperm < 0.05). Baseline α t-SPC events were observed mostly in the
MFG. Interestingly, α t-SPC events were not significantly spatially
clustered around their centroid (x = −62.23mm, y = −13.04mm,
z = 30.4mm, pperm = 1, Fig. S9 and Source Data). β t-SPC events were
present at baseline and later dispersed temporally from auditory cue
presentation through speech production in the PostCG and SCG
(pperm < 0.05). Interestingly, the β t-SPC rebound was a more wide-
spread phenomenon, observed in PostCG and SCG, as well as in cor-
tical regions like PreCG, SMG, and STG which did not exhibit t-SPC
during the baseline (pperm < 0.05). β t-SPC events were spatially clus-
tered around their centroid (x = −65.27mm, y = −10.14mm,
z = 28.41mm, pperm <0.05, Fig. S9 and Source Data). γL and γH t-SPC
events showed no preferential spatio-temporal distribution. We also
compared the t-SPC event duration and centroid frequency across
different ROIs. Longer t-SPC events with a lower frequency centroid
occurred in the PostCG (~320ms, ~20Hz) and SMG (~310ms, ~18Hz)
(pperm < 0.05, permutation test) (Fig. S10 and Source Data). These
results indicate that different epochs of speech perception and pro-
duction are accompanied by frequency-specific STN-cortical SPC
signatures.

We next investigated the location of STN units involved in SPC.
Since the STN is not fully aligned with theMNI coordinates, we rotated
the MNI reference frame to align with the STN’s principal axes or
components (PC): posterior-anterior axis (PC1), dorsal-ventral axis
(PC2) and medial-lateral axis (PC3) (see Fig. S11A, B and “Methods” for
details). θ t-SPC events were significantly aggregated in the posterior-
medial region of the STN (pperm <0.05, θ1 in Figs. 4, S11C and S12, and
Source Data). Moreover, θ t-SPC events were localized more dorsally
(higher MNI z-coordinate) compared to t-SPC events in other fre-
quency bands (Fig. S13 and Source Data). Two α t-SPC hotspots
(pperm < 0.05, Figs. 4, S11C and S12) were identified in the posterior-
dorsal (α1) and posterior-ventral (α2) region of the STN. Of note, MFG
SPC exclusively contributed to the posterior-ventral cluster. Overall, α
t-SPC events were localized significantly inferior/ventrally (lower MNI
-coordinate and PC2 coordinate) compared to t-SPC events in other
frequency bands (Fig. S13 and Source Data). Spatial density analysis in
the β range demonstrated more β SPC in the dorsolateral part of the
STNduring the baseline and reboundphases (pperm <0.05,β1 in Figs. 4,
S11C and S12).β SPCdensity appearedmore focal during rebound than
during the baseline (Fig. S11C and Source Data). A transient increase in
β SPC events during auditory cue presentation was observed in the
centro-medial region of the STN. Thus, STN spikes during t-SPC events
exhibited adegree of frequency-dependent spatial specificity. Table S4
summarizes centroids of t-SPC event location and peakof t-SPC spatial
density for each frequency band on the cortex and STN.

Speech sound errors occur when θ–α spike-phase coupling is
delayed
If SPC is an indicator of information transfer between cortex and STN,
we hypothesized that SPC would correlate with speech performance.

Performance was defined by phonetic accuracy, i.e., percentage of
speech sound errors. Accordingly, we split trials into correct and error
trials based on whether the participant substituted or omitted any
phonemes during speech production (see Fig. S1 for the patterning of
errors and Source). We then computed SPC for correct and error trials
(Fig. 5). As high-frequency SPC did not show any significant task-
related modulation, we restricted this analysis only in pairs with sig-
nificant SPC in the 4–40Hz range and at least 20 trials in each condi-
tion (827 pairs in 46 neurons, please refer to Table S5 for details). This
analysis revealed that error trials exhibited lower θ–α SPC preceding
speech production, followed by an increase in θ–α SPC after the
speech termination (Fig. 5A, B). Notably, no difference was observed
during speech production. This correlation held whether we con-
sidered the SPC map (Fig. 5A) or the t-SPC occurrence (Fig. 5B) as a
measure of SPC strength (pperm <0.05, permutation test). We also
observed a significant increase of SPC strength in the high-β range
(20–25Hz) in error trials (Fig. 5A), but the result didnot hold truewhen
we looked at the SPC occurrence (Fig. 5B). We further hypothesized
that θ–α t-SPC events occurred earlier in accurate trials than in error
trials. We found that the median onset of θ–α t-SPC events is earlier in
accurate trials than in error trials, in a within-neuron analysis
(pperm < 0.05, Fig. 5C, D). t-SPC duration was not affected by phonetic
accuracy before or after speech production (pperm >0.05, Fig. 5E).

Firing rate modulation predicts the preferred spike-phase cou-
pling frequency
We used a variable-window width and pairwise-phase consistency
(PPC) correction (Eq. (4)) to ensure that changes in coupling strength
were notmerely a result of firing rate modulation. However, these two
neural phenomena may represent distinct, yet overlapping, mechan-
isms of modulation54,67. For most of these analyses, we used the t-SPC
index—the ratio of the number of t-SPC events to all possible pairs at
the single-neuron level—as an SPC measure to correlate with other
single-neuron properties such as firing rate (see Fig. S5).

To investigate this question, we asked whether STN neurons with
higher baseline firing rates had more cortical coupling (Fig. S14A and
Source Data). Neurons showed no significant correlation between
average firing rate and t-SPC index (ratio of t-SPC events to all possible
pairs at the single-neuron level) (R2 = 0.006, pperm =0.23), or average
firing rate and t-SPC centroid frequency (R2 = 0.006, pperm =0.27).

We then asked if change in firing rate for a given neuron was
associated with increased coupling, and in which frequency bands.
We plotted t-SPC index changes between behavioral epochs against
z-scored firing rate modulation (with respect to baseline) during
speech production (see Fig. S14B, “Methods” and Source Data).
Again, t-SPC index changes were not correlated with firing rate
modulation in any frequency band. We observed (θ–α) t-SPC changes
(increase: 31/211 units, 15% and decrease: 2/211 units, 1%) only in
neurons exhibiting low or negative firing rate changes (<5 z-score).
Among the 27 neurons that displayed β t-SPC events during the

Fig. 2 | STNneurons showtransient task-relatedcoupling to thecortex ineither
θ–α or β bands. A Average of the spike-phase coupling (SPC)maps with significant
spike-phase coupling (N = 2148 pairs). The pairwise-phase consistency (PPC) index
is compared to the permutation distribution and expressed as z-score. Group-level
statistical test (t-stat) of the significance of the z-score PPC with respect to the
baseline across all the significant pairs. Red and blue lines contour regions of sig-
nificant SPC increase or decrease, respectively. Black and magenta vertical dashed
lines denote auditory cue (AC) and speechproduction (SP) windows.B Examples of
single-pair SPC maps show that STN neurons preferentially locked to cortical
phases only during brief and transitory episodes. C Definition of the transient-SPC
event (t-SPC event) in a single-pair SPC map. We calculated the onset and offset
times, temporal duration, and the frequency centroid for each t-SPC event. Most
pairs exhibit only one t-SPC event, as shown by the barplot. The inset plot depicts
an exemplary SPC map with two t-SPC events in the same frequency band.

DDistribution of the t-SPC duration and t-SPC frequency centroid. To augment the
readability of the t-SPC frequency distribution, we adopted a logarithmic scale. The
red dashed line depicts the median of the distribution. E List of the t-SPC events
(N = 2987) ordered by frequency centroid. F t-SPC events occurrence grouped by
frequency band. Shaded areas illustrate the 5th and 95th percentiles of the per-
mutation distribution for the aggregation test. θ (red), α (dark orange), β (yellow),
γL (green) and γH (blue). G (Top) t-SPC frequency-band specificity (defined as one
minus the entropy of the distribution of t-SPC events across frequency bands; see
"Methods") is depicted for each neuron (N = 211). The pie charts depict the pro-
portion of the t-SPC frequency band for two exemplary neurons. Dark gray boxes
indicate the 5th and 95th percentile of the permutation distribution. (Bottom) 2D
distribution of the SPC strength expressed as PPC (z-score) across all pairs
(N = 19755) between different frequency bands (left: θ vs α, center: θ vs β, and right:
α vs β). Colormap and contours indicate the 2D density of the scatter plot.
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baseline, 25 (93%) neurons significantly reduced their β t-SPC during
speech production, either completely (22/25) or partially (3/25).
Interestingly, a fraction of neurons (16/211, 8%) exhibited a slight
increase in β t-SPC during speech production, suggesting a partial
maintenance of the β SPC at the single-unit level. We found that these
neurons (N = 16/211, 7.6%) are not specifically clustered in a specific
region in the STN (X = −13.50mm, Y = −14.74mm, Z = −8.25mm,

pperm = 0.065). Interestingly, at the cortical level, these neurons
mainly couple to the subcentral gyrus (X = −62.82mm, Y = −4.19mm,
Z = 29.14mm, pperm < 0.01). Importantly, we observed no significant
differences in firing rate changes between neurons that decreased β
t-SPC density during speech production or increased β t-SPC density
after speech termination and neurons with no changes in β t-SPC
density (Fig. S14 and Source Data).
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Next, we compared the speech-related SPC across different firing
rate categories. Neurons whose firing rates weremodulated by speech
(8.3%) exhibited similar t-SPC indices as neurons without speech-
related firing rate modulation (8.7%). Among the speech-modulated

neurons, thosewith a decreased firing rate had the highest t-SPC index
(13.4%), surpassing both neurons with an increased firing rate (6.5%)
and those with mixed modulation (10%) (pperm < 0.01, Fig. S15A and-
Source Data). Next, we compared the centroid duration and frequency

Fig. 3 | STN neurons couple to the SMG-pSTG in θ–α during speech. A Spatial
density of the t-SPC events across frequency bands in seven regions of interest, as
derived from the Destrieux atlas26. We applied the t-max correction across ROIs in
each panel to control for multiple comparisons. B Cortical spatial density map (of
2mm) across frequency bands. The size of the spheres represents the degree to
which t-SPC events are localized in a 2mm radius around the center of the spheres.
Inset plots illustrate the overall t-SPC spatial density (white bar plots) and t-SPC
event occurrence in each regionof interest. Shaded areas illustrate the 5th and 95th
percentiles of the permutation distribution for the aggregation test. Dark gray
boxes indicate the 5th and 95th percentile of the permutation distribution for the
spatial preference test. Regions with spatial density higher or lower than the per-
mutation distribution are labeled as high or low spatial preference. Black and

magenta vertical dashed linesdenote auditorycue (AC) and speechproduction (SP)
windows. θ (red),α (dark orange),β (yellow), γL (green) and γH (blue). Black lines on
the cortical surface delineate two anatomical landmarks: the Sylvain fissure (SF),
which divides the temporal from the frontal and parietal lobes, and the Central
sulcus (CS), which separates the Precentral gyrus (PreCG) anteriorly from the
Postcentral gyrus (PostCG) posteriorly. List of cortical regions of interest: Pre-
central gyrus (PreCG), Postcentral gyrus (PostCG), Supramarginal gyrus (SMG),
Subcentral gyrus (SCG), Superior temporal gyrus (STG), posterior Superior tem-
poral gyrus (pSTG), Middle frontal gyrus (MFG), and the orbital part of the inferior
frontal gyrus (pars O.) The anatomical reference of the frame shows the dorsal (D),
lateral (L), and posterior (P) directions.
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of t-SPC events across these firing rate categories. Neurons withmixed
firing rates (~0.31 s) and decreased firing rates (~0.31 s) had longer
t-SPC events, with median centroid frequencies of 18Hz and 20Hz,
respectively (Fig. S15B, C and Source Data). Both the group-level SPC
maps and t-SPC event analyses revealed that only neurons with
decreased firing rates significantly contributed to θ t-SPC events dur-
ing speech production (Fig. S16A–C). In contrast, neurons with either
decreasedor increasedfiring rates exhibited similar profiles forα t-SPC
events. θ–α t-SPC events occurred less frequently during auditory cue
presentation andmore frequently during speech production. Notably,
neuronswith increasedormixedfiring ratemodulation predominantly
contributed to the aggregation of β t-SPC events during the rebound
phase. Only neurons with mixed firing rate modulation showed a sig-
nificant aggregation of β t-SPC events during the baseline period. In
summary, neurons with decreasing firing rates exhibited t-SPC events
dominated by θ and α rhythms, while neurons with increasing firing
rates showed t-SPC events in the α–β range. This “band-pass” profile
was particularly narrowband in β for neurons with mixed firing rate
modulation. No distinct pattern of t-SPC coupling was observed in
neurons without firing rate modulation at any level of analysis
(Fig. S16A–C). These results suggest that the pattern of firing rate
modulation in STN neurons—whether increasing, decreasing, ormixed
—affects the frequency specificity of speech-related phase-of-firing
coding.

We also examined the cortical distribution of SPC for each cate-
gory of speech-related firing modulation. All categories exhibited a

preference for coupling with PostCG, while neurons with decreased
and mixed firing rates also showed significant coupling with the SMG.
Additionally, neurons with decreased firing rates showed the highest
coupling to the STG among all firing rate categories (Fig. S16D and
Source Data). In summary, while firing rate modulation alone does not
fully explain the dynamics of SPC, our results indicate that the pattern
of firing rate change is strongly correlated with distinctive patterns of
SPC, characterized by specific spectral, temporal, and anatomical
features.

Frequency dependence of preferred phase of coupling reflects
cortico-subthalamic time delays
When an STN neuron locks to a cortical oscillation, we can extract the
phase at which the locking occurs. The specific phase of the locking—
such as the rising edge, peak, or trough—has been shown to encode
key information, such as object identity in working memory68,69 and
contralateral versus ipsilateral movement in motor control51,52. After
standardizing polarity across all t-SPC events (see “Methods”), we
tested whether STN neurons consistently locked to a specific phase.
We analyzed each frequency band independently and estimated the
time-resolved population-level preferred phase (Fig. S17A). We found
that t-SPC events in the α range, but not other frequency bands, are
significantly coherent around the same phase of firing across pairs
(108°, during the decay after the peak of oscillation) during speech
production (p <0.05, Hodges–Ajne test). In contrast, β t-SPC events
are uniformly locked around the trough (−90°) of the oscillation
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before and after the β t-SPC rebound (p <0.05, Hodges–Ajne test),
consistent with previous studies that employed electro-
encephalography or low-density EEG strips54.

Extracting phase across all t-SPC events helped us answer another
important question in our investigation of cortical-subcortical coor-
dination during speech: does cortex lead STN, or does STN lead cor-
tex? We leveraged the population-level broadband t-SPC frequency
distribution to estimate the directionality andmagnitude of latency of
information transfer, using t-SPC events in the 5–40Hz range (see
“Methods”). We plotted the relationship between the t-SPC phase and
the frequencyof the locking (Fig. S17B and SourceData),finding a clear
linear relationship between phase and frequency. The linear relation
suggests that STN spikes occur at a consistent time lag relative to the
peakof the rhythmic ECoG activity54. The slope of the fit translated to a
positive time lag with cortical activity leading STN of 40.92ms
(R2 = 0.76, pperm <0.001) (Fig. S17B bottom). When we performed the
same analysis over time, we found that this relationship was particu-
larly consistent during the β t-SPC rebound (39.81ms, black dots in
Fig. S17B bottom). Interestingly, STN spiking led to ECoG activity
during speech production (−32ms), while θ–α t-SPC events weremore
frequent than β t-SPC events (green curve in Fig. S17B bottom). These
results suggest that θ–α t-SPC and β t-SPC observed here may reflect
separate information flows between STN and cortex.

Control analyses
To ensure the robustness and validity of our SPC estimates, we con-
ducted a comprehensive set of control analyses. First, as our work
heavily relies on the concept of t-SPC events, we performed simula-
tions to assess the ability of our pipeline to reliably identify genuine
SPC events under a range of conditions relevant to our dataset
(Fig. S18 and Supplementary Text for details). The simulations sys-
tematically varied parameters related to task design (e.g., number of
trials, variability in intra-participant behavioral events), neural activity
(e.g., true SPC strength, SPC duration, baseline firing rate, firing rate
modulation), and controllable signal conditioning settings (e.g., sam-
pling rate, number of anchor points, target windowwidth). Our results
demonstrate that the variable-width procedure combined with a
cluster-based permutation test effectively identifies non-spurious t-
SPC events. Additionally, this approach achieves high accuracy in
estimating the timing and duration of these events across a wide range
of conditions. However, we found that the pipeline performance is
particularly sensitive to the sampling rate, requiring sampling rates of
at least 1 kHz, underscoring the importance of careful parameter
selection during data acquisition and preprocessing. Second, we
examined the impact of removing the event-related component of the
ECoG signal before the computation of the SPC metric. After elim-
inating this component, the profile of the SPC maps remained largely
unchanged, even at lower frequencies (Fig. S19A, B). Indeed, we found
no evidence of phase reset of oscillations at the onset of auditory cue
and speech production (Fig. S19C). These findings suggest that the
event-locked components (trial-averaged speech-locked signals) did
not significantly influence the observed SPC pattern. Third, we asses-
sed the influence of periods with high (top 10th percentile) or low (low
10th percentile) oscillation amplitude. When excluding these specific
periods, the results remained comparable (Fig. S20). We further
explored the influence of power magnitude on SPC by examining
changes in power during speech production in ECoG contacts, with a
specific focus on the θ–α bands in relation to SPC (Fig. S21). We found
that, unlike the β band, where we observed both β power suppression
and β-SPC suppression during speech production, the θ–α power and
θ–α SPC exhibited distinct patterns. Specifically, θ–α power was sup-
pressed during speech production, while θ–α SPC increased. This
indicates that the increase in θ–α SPC during speech cannot be
attributed solely to an increase in the overall amplitude of θ–α oscil-
lations. Next, we explored whether ECoG contacts with significant SPC

differed from those without SPC in terms of task-related power mod-
ulation. We found that ECoG contacts in the SMG, PreCG, and PostCG
regionswith significant SPCweremore responsive to the task, showing
greater suppression of low-frequency oscillations and enhanced high γ
activity during speech production (Fig. S21). These control analyses
reinforce the significance of the observed SPC patterns.

Discussion
Using simultaneous recordings from the perisylvian cortex and STN
while Parkinsonian participants performed a syllable repetition task in
the operating room, we discovered novel aspects of the neural coding
of speech production that inform general principles of cortical-basal
ganglia network information transfer. We found that STN neurons
phase-locked to cortical oscillations in transient (~268ms long) events.
Any given neuron tended to lock to only one cortical oscillation fre-
quency band and the type of firing rate modulation was predictive of
the frequency of phase-of-firing. We identified one STN population
that locked in the θ–α range, and another that locked in the β range.
These events showed differential patterns across cortical regions and
across auditory perception and speech production epochs of the task.
β t-SPC events clustered over ventral SMC and were prominent just
after speech offset. Meanwhile, θ–α t-SPC events clustered over SMG
and STG and were prominent during speech. In exploring the rela-
tionship between t-SPC events and phonological speech production
errors, we found that participants produced more errors in trials with
delayed θ–α t-SPC events.

Principles of cortico-basal ganglia network interactions
Our results align with the notion of the cortico-basal ganglia thalamic
loop subserving temporal integration for modulating motor
control70–72, consistent with previous evidence of SPC between STN
neurons and cortical field potentials during limb movement52–54,67,73.
Similarly, cortical oscillationsmanifest as transient bursts,whoseonset
is preceded by an increase of SPC with the STN74. These transient
periodsmight represent “open windows” for effective communication
between STN and cortex. The duration of these windows may be
constrained by a slower subcortical neural timescale and requirements
of a given motor instantiation50,74.

Consistent with findings from limb movement studies52,54,67, our
results demonstrate that STN neurons preferentially couple with β
oscillations across broad cortical regions. This SPC was generally
suppressed during task execution, with a rebound observed following
speech termination. In contrast, we did not detect an increase in γ
coupling during speech preparation, a phenomenon previously
reported between the STN and PreCG during movement
preparation51,75,76, where it has been interpreted as amodulatory signal
associated with reaction time and movement facilitation. Cortical
oscillations lead to phase overfiring activity in the STN, especially in
the β range post-speech. We found a delay of ~41ms aligning closely
with other reports52,54. Notably, the STN led the cortex exclusively
when SPC in θ and αwasmore pronounced during speech production.
While this delay does not necessarily signify synaptic transmission
delay, it is consistent with the transmission of information through the
cortico-basal ganglia loop. In light of our recent findings suggesting
the presence of monosynaptic connections between non-motor
regions of the cortex (sensorimotor and auditory areas) and the
STN48, it is not out of the question that the SPC we report here is
anatomically rooted in the hyperdirect pathway.

The STN SPC found in this study complements previous studies
describing γ amplitude changes in the STG and SMG56,77 and STN
single-unit correlates in speech41,45,47,49, reinforcing the importance of
the STN as a hub that processes multimodal cortical information78.
Prior studies have reported that STN neurons encode phonetic char-
acteristics during speech production47 and that STG lexical-encoding γ
signals are projected into the STN prior to speech production49. A
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recent study showed that changes in functional connectivity between
STN and language regions predicted the downstream effect of dopa-
minergic medication on speech-related cognitive performance79.
Coming from a different recordingmodality and differentmeasures of
connectivity, our results bolster the finding that STN is involved in
speech circuitry. Future work may investigate how much articulatory
and acoustic information is encoded in SPC specifically.

At the neuron level, changes in SPC during speech production
were not correlated with speech-related changes in the instantaneous
firing rate or the baseline instantaneous firing rate. Other studies have
reported similar decoupling between SPC strength and firing rate in
STN neurons during movement52,53. STN neurons were preferentially
coupled to a single frequency band which was significantly explained
by the pattern of firing rate modulation in STN neurons. STN neurons
with decreasing firing rates exclusively drove θ SPC. In a previous
study41, we found these neurons to be temporally locked to the onset
of the auditory cue. Conversely, neurons with increasing firing rates
displayed SPC in β, which was notably narrowband around 17Hz in
neurons with mixed firing rate dynamics. The phenomenon of SPC in
response to behavioral state transitions and activity shifts remains
relatively underexplored. Broicher and colleagues80 utilized dynamic-
clamp experiments to replicate in vivo-like conditions in hippocampal
pyramidal neurons, showing that SPC frequency profiles are modu-
latedby conductancestates and inputfiring rates. Specifically, neurons
in low-conductance states with reduced firing rates exhibited low-pass
coupling, whereas neurons in high-conductance states with elevated
firing rates displayed band-pass coupling. These differences can be
attributed to mechanisms such as spike rate adaptation, which mod-
ulates the input-output gain (current-voltage relationship) and func-
tions as a high-pass filter81, as well as frequency resonance intrinsic to
the spike-generation process. Our findings suggest that similar
mechanisms underlie SPC dynamics in the STN. These results under-
score the dynamic nature of phase-of-firing coding within the STN,
drivenby a complex interplay of neural network states and the intrinsic
adaptive properties of individual neurons during speech-related tasks.
We also found that the pronounced overall reduction of β SPC
observed at the population level during speech production did not
reflect a uniform reduction of SPC at the single-unit level. A small
subset of neurons (8%) increased their β SPC during speech produc-
tion, suggesting a partially maintained β SPC and the presence of a
distinct functional β SPC networkmainly rooted in the SCG. This aligns
with two other studies that reported similar subpopulations of STN
neurons, which increased their β SPC during motor activity52,54. The
functional relevance of this partially maintained β SPC during speech
production remains uncertain. Our findings overall underscore the
notion that information can traverse the cortico-basal ganglia loop
either through changes in the firing rate activity or spike timing. The
presence of SPC between STN neurons and narrowband cortical
oscillations does not imply that STN neurons generate and resonate
coherent rhythms with the cortex82. For example, neurons displaying
significant θ SPC with the STG do not necessarily oscillate in the θ-
rhythm at the population level. Therefore, our STN SPC topographies
during speechproductionwouldnotnecessarily alignwith STNpower-
based topographies based on LFPs recorded at rest64,83.

θ–α spike-phase coupling with SMG-pSTG
We uncovered a neural correlate of speech errors in our syllable
repetition task: delayed, lower θ–α t-SPC between STN and SMG-pSTG
(posterior STG) (Fig. 5). Here we discuss two possible interpretations
of how the θ–α SPC differences relate to the speech errors. One pos-
sibility is that the errorswere related to phonologicalworkingmemory
(PWM)84. We defined error trials as those in which at least one off-
target phoneme was produced. Participants frequently made sub-
stitution errors in which the off-target phoneme was perceptually
dissimilar to the target phoneme (Fig. S1); production errors were thus

unlikely the result of perceptual errors. Instead, the errors may be
rooted in the failure of PWM to maintain the proper sequence in
memory until speech production. Additionally, θ–α SPC significant
differences appear in the second half of the auditory window (Fig. 5B)
when we would expect a reliance on PWM to maintain the syllable
sequence. θ–α SPC was observed predominantly in cortical regions
that have long been implicated in PWM: the inferior parietal cortex and
adjacent regions in pSTG (Fig. 3)85,86. θ SPC has been documented as a
mechanism subserving working memory87, lending further credibility
to the PWM account of the speech errors.

Another possibility is that lower θ–α SPC in error trials is related to
auditory-motor integration, or the interface between auditory input
and motor programs in the speech production system1. Because our
auditory stimuli were phonotactically legal but meaningless, partici-
pants could not rely on lexical or semantic anchors to remember the
verbal sequences. Participants would instead have to rely heavily on
the “dorsal stream”of auditory processing in speech in the dual-stream
model of speech processing88. The dorsal stream translates from sen-
sory information to a motor encoding. The neurobiological corner-
stone of the dorsal stream is situated just adjacent to the SMG-pSTG
complex we identified in this study, in an area referred to as “Spt”
(Sylvian-parieto-temporal). Spt, at the parieto-temporal boundary in
and around the posterior Sylvian fissure, has been extensively studied
for its sensorimotor properties89–92. Spt is critical for auditory repeti-
tion as it is hypothesized to compute a “coordinate transform” from
auditory to motor space1. Lesions to this area can cause conduction
aphasia—the selective deficit of verbatim repetition, despite fluent
spontaneous speech and intact language comprehension93,94. Here, we
find evidence that Spt and adjacent regions in the posterior perisylvian
cortex might achieve this well-established auditory-motor interfacing
by recruiting the BG, and specifically by leveraging θ–α coupling
with STN.

Models of speech production
The cortical task-activated speech regions in this study—SCG, PostCG,
PreCG, SMG, and pSTG—are key parts of the DIVA95,96, state-feedback
control97, and hierarchical state-feedback1 accounts of speech produc-
tion. However, it is challenging to map our results directly onto these
models because they (1) are largely activation-based and thus agnostic to
electrophysiological mechanisms like LFP-spike inter-areal interaction
and (2) focus on single-word production rather than speech sequencing,
(3) do not detail different basal ganglia nodes like STN.

We briefly address the gradient order DIVA (GODIVA) model here
because it concerns speech planning mechanisms96,98, which is infor-
mative for the θ–α SPC differences we observed >1 s before speech
onset in accurate versus error trials. GODIVA posits a phonological
content buffer for upcoming speech sounds. The buffer maintains
multiple speech sounds in parallel, releasing them serially at the
appropriate time.Our results highlight the role of the pSTG-SMG in the
buffering process, while GODIVA posits that the buffer is subserved by
areas in and around the posterior inferior frontal gyrus. Two possible
explanations for this apparent discrepancy are as follows. First, GOD-
IVA is largely grounded in evidence from activation-based studies,
while our t-SPC metric is a measure of connectivity. Although they are
often closely linked, activation and connectivity are separate
mechanisms that can reveal different patterns of neural coding. Elec-
trodes in the inferior frontal gyrus were active in the high-gamma
range during both the speech planning and production window—but
did not communicate with STN via t-SPC events. Second, our verbatim
repetition syllable task may require greater reliance on auditory-to-
motor coordinate transform than many of the orthographically cued
tasks which informed GODIVA. The nature of the phonological pro-
cessing required in this auditorily-cued task design may shift the
phonological processing load from inferior frontal regions to the
posterior perisylvian regions (pSTG-SMG) highlighted in this study.
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Future computational models of speech may be able to work
across levels of abstraction to maintain tractability but also consider
mechanistic descriptions of brain interactions. At aminimum, our data
and results inform future computationalmodels of speech production
that integrate the basal ganglia.

Clinical implications: STN-DBS and transcranial magnetic
stimulation
Beyond expanding theoretical frameworks, our results may have
important implications for clinical therapies. Although many Parkin-
sonian motor symptoms can often be satisfactorily controlled by STN-
DBS, stimulation-induced effects on the speech-motor system can be
heterogeneous99. How can stimulating the same target nucleus con-
sistently ameliorate some Parkinsonian symptoms yet havemixed and
variable effects on the speech-motor system?Our results alignwith the
notion that variability in DBS lead placement can explain most of the
reported variance of outcomes in the literature63. Relative to the
optimal therapeutic target defined by Caire et al.100 (x = −12.6mm,
y = −13.4mm, z = −5.9mm), the spatial centroid of our speech-related
STN SPC is at least 2.5mm distant and overall located more posterior
and ventral (Table S4). This aligns with studies that found detrimental
effects on speech outcomes when stimulating more posteriorly101–104

and ventrally105. However, all these studies simply compare the speech
outcomes between DBS ON and DBS OFF conditions without con-
sidering the stimulation amplitude and the spread of the stimulation
volume toward neighboring regions. Hypotheses for future investiga-
tion include stimulating the STN in areas of SPC density peaks to test
for altered integration of sensorimotor and auditory signals. Non-
invasive neuromodulation techniques, like transcranial magnetic sti-
mulation (TMS), have been evaluated as therapies to alleviate symp-
toms inParkinson’s disease106–108. Our results could informTMSstudies
targeting speech symptoms. Studies have demonstrated an improve-
ment in hypokinetic dysarthric symptoms by stimulating around the
pSTG-SMG complex implicated in this study109,110. Further research is
warranted to what degree TMS may alleviate more motoric versus
more cognitive aspects of PD speech symptoms111.

Limitations
Our findings should be interpreted in the light of several limitations.
First, our intracranial recordings are from patients with PD. Caution
must be exercised when interpretations of human neurophysiology are
drawn from observations collected in a pathological state. Specifically,
differences in the STN baseline firing rate112, abnormal subcortical beta
oscillations62,113–115, and loss of movement specificity116 that characterize
the Parkinsonian state may confound the distinction of whether our
observations generalize to speech in individuals without PD. There are
noopportunities to record fromhumanbasal ganglia nuclei that are not
in a pathological state; however, future research can clarify which
aspects of our results generalize to non-pathological basal ganglia.
Second, because recording locationswere clinically determined,wehad
uneven coverage of the STN and of the lateral speech-motor cortex.
Most microelectrode trajectories traversed the dorsolateral part of the
STN, the clinical target for PD DBS63. Hence, sampling of the ventro-
medial region of the STN is limited. ECoG coverage also varied across
participants and spanned a limited region of the cortical surface. We
cannot rule out any other interaction of the STN with other cortical
regions. Lastly, we are unable to draw any conclusions based on our
data regarding speech specificity because patients completed only the
speech task in the operating room. We therefore can’t weigh in on the
differences between cortico-basal ganglia interaction in speech versus
limbmotor control. Given thedifferential patterningof speech andnon-
speech-motor control in PD and treatments for PD117–119, future research
may explore and compare different movement modalities.

In summary, we discovered evidence that STN neurons are linked
to the phase of the cortical oscillations during speech. These insights

provide a deeper understanding of how different types of information
are processed in basal ganglia-cortical loops and have significant
implications for understanding the role of the human basal ganglia in
sensorimotor integration for speech and other behaviors120.

Methods
Participants
Electrophysiological signals were recorded intraoperatively from 24
participants (20 males and 4 females, age: 65.4 ± 7.1 years; mean± SD)
with Parkinson’s Disease undergoing awake stereotactic neurosurgery
for implantation of DBS electrodes in the STN (Table S1 for clinical
details). Participants performed up to 4 sessions of the task, leading to
a total of 64 sessions, after overnight dopaminergic medication with-
drawal. All procedures were approved by the University of Pittsburgh
Institutional Review Board (IRB Protocol #PRO13110420) and all par-
ticipants provided informed consent to participate in the study.

Method details
Speech production task. Participants were tasked to intraoperatively
repeat aloud CV syllable triplets. The stimuli were presented auditorily
via earphones (Etymotic ER-4 with ER38-14F Foam Eartips) and were
delivered at either low (~50 dB SPL) or high (~70 dB SPL) volume using
BCI2000as stimulus presentation software. The absolute intensitywas
tailored to each participant’s comfort level, keeping fixed the differ-
ence between high and low conditions at 25 dB SPL. The experiment
utilized a set of phonemes consisting of four consonants (/v/, /t/, /s/,
/g/) with different manners of articulation and three cardinal vowels
(/i/, /a/, /u/) with distinctive acoustic properties. We created a unique
set of 120 triplets of CV syllables, forbidding CV repetition within the
triplet and balancing syllables and phoneme occurrence, and CV
position within the triplet across a run of the task. The audio produced
by the participant was recorded with a PRM1 Microphone (PreSonus
Audio Electronics Inc., Baton Rouge, LA, USA) at 96 kHz using the
Zoom-H6portable audio recorder (ZoomCorp.,Hauppauge,NY,USA).

Neural recordings. As part of the standard DBS clinical procedure,
functional mapping of the STN was performed using microelectrode
recordings (MER) acquired with the Neuro-Omega recording system
(Alpha-Omega Engineering, Nof HaGalil, Israel) using parylene insulated
tungsten microelectrodes (25μm in diameter, 100μm in length). The
microelectrodes were oriented using three trajectories (Central, Poster-
ior, and Medial) of a standard cross-shaped Ben-Gun array with a 2mm
center-to-center shaping. MER signals were referenced to the metal
screw holding one of the guide cannulas used to carry the microelec-
trodes and recorded at 44KHz. Prior to STNmapping, participants were
temporarily implanted with two high-density subdural electro-
corticography (ECoG) strips consisting of 54 or 63 contacts, respectively
(PMTContact). These stripswere placed through the standard burr hole,
targeting the left ventral sensorimotor cortex, and left inferior frontal
gyrus. Signals from ECoG contacts were referenced to a sterile stainless-
steel subdermal needle electrode placed on the scalp and acquired at
30kHz with a Grapevine Neural Interface Processor equipped with
Micro2 Front Ends (Ripple LLC, Salt Lake City, UT, USA).

Electrode localization. We localized the ECoG strips and DBS leads
using well-established pipelines in the literature. For ECoG strips,
contact locations were determined using the Randazzo localization
method121 that utilizes a preoperative T1 weighted MRI scan, an
intraoperative fluoroscopy, and a postoperative CT scan (github.com/
Brain-Modulation-Lab/ECoG_localization). CT and MRI were coregis-
tered using SPM and then rendered into a 3D skull and brain using
Osirix (www.osirix-viewer.com) and Freesurfer (https://surfer.nmr.
mgh.harvard.edu) software. The position of the frame’s tips on the
skull and the implantedDBS leadswere used as fiducialmarkers,which
were coregistered and aligned with the projection observed in the
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fluoroscopy. The position of the contacts in the ECoG strip was
manually marked on the fluoroscopy image and then projected to the
convex hull of the cortical surface. To extract the native coordinates of
individual contacts, we leveraged the known layout of the ECoG strip.
All coordinates were then transformed into the ICBM MNI152 Non-
Linear Asymmetric 2009b space, employing the Symmetric Diffeo-
morphism algorithm implemented in Advanced Normalization Tools
(ATNs). For DBS lead reconstruction, we used the Lead-DBS localiza-
tion pipeline122. Briefly, the process involved coregistering theMRI and
CT scans, and manually identifying the position of individual contacts
based on the CT artifact, constrained by the geometry of the DBS lead
used. The coordinates for the leads in each participant’s native space
were rendered after this process. CustomMatlab scripts (github.com/
Brain-Modulation-Lab/Lead_MER) were then used to calculate the
position of the micro- and macro-recordings from the functional
mapping based on the position of the lead, the known depth, and tract
along which the lead was implanted in each hemisphere. Anatomical
labels were assigned to each contact based on the Destrieux atlas123 for
cortical contacts, and the DISTAL atlas124 for subcortical contacts.

Quantification and statistical analysis
Phonetic coding. To extract phoneme characteristics from the pro-
duced speech signals such as onset and offset times, IPA code, and
accuracy, we employed a custom Matlab GUI (github.com/Brain-
Modulation-Lab/SpeechCodingApp). Phonetic coding of each pro-
duced phonemewasperformedby a trained teamof speechpathology
students using Praat (https://www.fon.hum.uva.nl/praat/). Dis-
crepancies between the produced phoneme and the target phoneme
were labeled as phonetic errors. We identified three types of errors:
consonant substitution (e.g., /g/ produced as /v/), vowel substitution
(e.g., /u/ produced as /i/), and phonemic omission (e.g., /su/ /ti/ /ga/
produced as /su/ /i/ /ga/). The same trained team of speech pathology
students also evaluated articulation disorders and voice quality at the
single phoneme level. Please refer to the Supplementary Text for
details.

Behavioral events. For each trial, we defined four different behavioral
epochs: baseline epoch as a 500ms time window between −550ms
and −50ms prior to the auditory cue onset, auditory cue presentation
as the window during which syllable triplets were presented auditorily
(~1.5 s duration), speech production as the variable time window dur-
ing which participants repeated aloud the syllable triplet (~1.6 s dura-
tion on average) and post-speech as the 500ms time window after the
speech offset.

Electrophysiological data alignment. To temporarily align the con-
tinuous recordings from the Ripple, Neuro-Omega, and Zoom-H6
systems, we employed a linear time-warping algorithm based on the
stimulus and produced audio channels. We defined the Ripple files as
the “leader” time and independently aligned the Neuro-Omega and
Zoom-H6 recordings to it. To this end, we first coarsely align the files
from different sources manually (no warping) by marking easily
identifiable landmarks on each file (i.e., the beginning of the first trial).
We then split the files into chunks of around 100 s and performed a
staged optimization procedure, independently in each chunk, to find
the precise alignment and warping factor. In the first stage, the
envelopes of the corresponding audio signals from the two files were
calculated at 100Hz, by calculating the maximal absolute value in
10msbins.We next found the delay (j) between the envelopes (Eq. (1)),
which maximized their cross-correlation (rj) and adjusted the “fol-
lower” channel accordingly:
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Next, we applied the following time-warping algorithm: we cal-
culated a smooth interpolation function f ðtÞ, such that f ðtiÞ= yi for all
time points ti, where yi is the corresponding follower signal value. We
defined the time-warping function ωðtÞ= t0 + tp + ðt � tpÞγ, where tp is
the “pivot time” defined as the midpoint of the leader chunk to syn-
chronize, γ is the time-warping factor and t0 a small “time translation”
correction. Using this function, we calculated the time-warped fol-
lower signal s

*
such that si = f ðωðtiÞÞ. We then optimized the time-

warping parameters to maximize the correlation between s
*

and the
leader signal pattern p

*
, that is, ω= argmaxr0ðp

*
, s
*Þ. We did the opti-

mization using fminsearch in Matlab, by minimizing the cost function
(Eq. (2)), as follows:
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where the regularization parameter k0 was set to 0.0003 and k1 to
0.001. To achieve sub-millisecond precision, a second stage was done
using the same synchronizationalgorithmon the rawaudio signal, low-
pass filtered to 5 kHz and resampled to 10 kHz for computational
efficiency. Note that the fitted warp factor γ typically differed from
unity in one part in 105, meaning that the correction amounted to 1ms
every 100 s, and was very consistent within-subject and file type. The
tolerance of the synchronizationwas defined as themaximalmismatch
in synchronization between adjacent 100 s chunks calculated for each
participant. Sub-millisecond synchronization precision was achieved.
Note that a 1msmismatch only represents a 3% change in phase in the
high β range and a 10% change for high γ.

Electrophysiological data preprocessing. ECoG preprocessing was
performed using custom code based on the Fieldtrip toolbox125

implemented in Matlab, available at (github.com/Brain-Modulation-
Lab/bml). Data was low-pass filtered at 250Hz using a 4th-order But-
terworth filter, downsampled to 1 KHz, and stored as a Fieldtrip object.
Metadata such as descriptions of each session, phonetic coding, event
times, and electrode locations were stored in annotation tables. We
applied a 5th-order high-pass Butterworthfilter at 1 Hz to removedrifts
and low-frequency components. Segments with conspicuous high-
power artifacts were identified using an automatic data cleaning
procedure126, based on a power-based threshold. Specifically, we
extractedpower at frequencies in different canonical bands (3Hz forδ,
6 Hz for θ, 10Hz for α, 21Hz for β, 45Hz for γL, and 160Hz for γH) by
convolving ECoG signalswith a 9-cyclesMorlet wavelet. A time binwas
classified as artifactual if its log-transformed power in any band
exceeded a threshold defined as the mean ± 2.5 std (~10-fold higher
than the mean). Trials with time segments flagged as artifactual were
discarded and channels with more than 30% of artifactual time bins
were not included in the analysis.

Spike sorting. Spike sorting was performed using Plexon (https://
plexon.com/products/offline-sorter/)41. We used a 4th-order Butter-
worth high-pass filter with a cut-off frequency at 200Hz and set a
manual threshold to extract putative waveforms. Single units were
discriminated and graded based on factors such as cluster isolation in
the principal component, the spike sorting’s stability over time, a
refractory periodof at least 3ms in the inter-spike interval distribution,
and the shape of the waveform.

Instantaneousfiring rate. To analyze changes in spike rate activity, we
followed the procedure described in ref. 41. We sought elevated and
reduced firing activity by computing the instantaneous firing rate
(gaussian kernel, σ = 25ms) and the inter-spike interval (smoothing
window 25ms), which scales with the reciprocal of the instantaneous
firing rate, respectively. We aligned these quantities with speech
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production onset and analyzed time bins from auditory cue onset
through speech production offset. A neuron was considered as a
Decreasing firing rate neuron if the inter-spike interval exceeded for at
least 100ms the upper 5% of a normal distribution with mean and
standard deviation calculated during the baseline period. Similarly, a
neuron was considered as an Increasing firing rate neuron if the
instantaneousfiring rate exceeded for at least 100ms the upper 5%of a
normal distribution with mean and standard deviation calculated
during the baseline period. Neurons that exhibit both modulations
were named as Mixed firing rate modulation neurons, while neurons
that did not exhibit any significant speech-related firing changes were
labeled as No firing rate modulation neurons. For a comprehensive
description of the firing rate modulation, please refer to Lipski et al.42.

Time-frequency decomposition. Time-varying power and phase were
obtained by applying the Hilbert Transform to the band-pass filtered
ECoG signal. The signal was band-pass filtered using a 4th-order But-
terworth filter, with the following frequency ranges: 5–8Hz for θ,
8–12Hz for α, 12–20Hz for low β, 20–30Hz for high β, and center
frequencies ranging from 40 to 150Hz with a bin width of 10Hz,
incrementing by 10Hz for γ.

Spike-phase coupling implementation. To calculate SPC, we con-
sidered each possible pair of neurons and ECoG signals that were
synchronously recorded. We enforced the following criterion for
determining the eligibility of pairs (N = 19,755) for subsequent analysis:
a minimum of 10 trials with a stable firing rate and clean ECoG signal.
The strength of the SPC was quantified by the phase-locking value
(PLV, Eq. (3)), which represents the magnitude of the circular average
of unit complex vectors corresponding to the ECoG phase at the time
of each spike φt, as follows:

PLV=
PN

t= 1e
j*φt

N

�����
����� ð3Þ

where N is the number of spikes included in the window. PLV is
bounded between 0 and 1, indicating lack or perfect SPC, respectively.
Importantly, PLV is inflated toward 1 when N is low. When N is suffi-
ciently large (N > 50), the pairwise-phase consistency (PPC, Eq. (4))
yields an unbiased estimator of SPC127, as follows:

PPC=
N

N � 1
PLV2� 1

N

� 	
ð4Þ

In the absence of SPC, PPC is expected to be centered around
zero, including negative value, when N is finite. As N increases towards
infinity, the PPC tends to PLV 2. Although different methods have been
proposed to estimate SPC,weopted to use PLV (and its extension PPC)
because it is one of the most established methods and its limitations
have been extensively studied in literature127–129. To ensure that chan-
ges in SPC depicted genuine and comparable neural correlates,
methodological considerations must be discussed. First, the presence
of speech-related fluctuations in the instantaneous firing rate poses a
challenge in selecting a fixed window size for calculating the phase-
locking value or PPC over time. This is because variable N can result in
uncontrollable and variables biases. Furthermore, low N can lead to
noisy estimates of PPC. Second, intra- and inter-participant variability
in speech production onset and duration makes the event-locked
analysis less accurate for the alignment of data around all key task
events and not just for one single event (the one used for locking). To
overcome all these limitations, we employed a variable-window width
SPC estimation procedure developed by Fischer and colleagues51. First,
we defined five intervals: from0.75 before the auditory cue to auditory
cue onset, from auditory cue onset to offset, from auditory cue offset
to speech production onset, from speech production onset to offset,

and from speech production offset to 0.75 s after. Second, we sub-
divided these intervals into 21 equidistant anchor points, resulting in
101 anchor points for each trial to ensure 10 anchor points in a 0.5 s
windowon average (50ms time resolution). Third, we scaled the width
of the window centered at each anchor point such that the sum of
spikes (N) across all trials would match a target number as closely as
possible. The target number was defined as the average number of
spikes in a window of 0.15 s, but always greater than 25 to avoid fewer
representative samples. This process allowed to enlarge/shrink the
computational window during reduced/increased firing rate periods,
ensuring that N remained constant over time. Note that we allowed
variable number of spikes across participants to reduce variability in
the window width. Finally, each window was placed symmetrically
around each anchor point, and we subsequently calculated the PLV
metric and applied the PPC correction. The resulting 19755 SPC maps
(PPC values of size 16 frequencybins x 101 timepoints)were smoothed
using a time-frequencywindow ([2, 2] size) and rescaled to the average
duration of the event intervals. These maps were then event-locked
and averaged across pairs and participants.

Phase polarity standardization. When computing the PLV or PPC,
information about the preferred phase is not retained. To identify the
preferredphase atwhich spikes are bundled, we calculated the circular
meanusing theCircStat toolbox130. However, it is important to exercise
caution when comparing preferred phases across recordings due to
the relative orientation between neural sources and electrodes (i.e.,
source mixing) and the use of different re-referencing schemas, as
these factors can obscure the interpretation of the instantaneous
absolute phase131. For instance, by applying the bipolar schema, the
orderof subtractionbetween twoelectrodes canflip throughs topeaks
and peaks to throughs. To ensure that phases were meaningfully
computed across recordings, we applied an automatized polarity-
standardization procedure51. Specifically, we flipped phases (+π) such
that γ peaks in the 60–80Hz range consistently coincided with
increases in the local high-frequency activity, which served as a
polarity-invariant proxy of background unit activity132,133. We com-
puted this proxy by high-pass filtering the ECoG signal at 300Hz, full-
wave rectifying it, and low-pass filtering it with a cut-off of 100Hz.
Flipping procedure was required in 7111/19755 pairs (36%).

Spike-phase coupling events. To further correct the SPC maps for
any residual bias and identify genuine increases in SPC, we converted
PPC values into z-scores relative to a permutation distribution and
performed a cluster-based permutation test134. We built the permuta-
tion distribution by shuffling the trial association between STN spikes
and EcoG phases 500 times. We paired spike timings from the ith trial
with EcoG phases from the jth trial (where i ≠ j). Importantly, to be
conservative and preserve the natural appearance of clusters, we
applied the same randomization across time-frequency bins. Supra-
threshold clusters (p <0.05) were identified in both the original SPC
map and in each permutation SPC map by computing the z-score
relative to the permutation distribution. If the absolute sum of the z-
scores within the original suprathreshold clusters exceeded the 95th
percentile of the 500 largest absolute sums of z-scores from the per-
mutation distribution, it was considered statistically significant. These
significant clusters in the SPC map were referred to as transient-SPC
events (t-SPCevents). SPCmaps that contained at least one t-SPC event
were considered significant. Please refer to Supplementary Text and
Fig. S18 for an in-silico validation of the t-SPC event identification.

Spike-phase coupling event characteristics. To fully characterize
each t-SPC event, we defined a set of characteristics in the time, fre-
quency, and phase domain. In the temporal domain, we calculated the
onset and offset times, temporal duration, and the center of the event
(i.e., the mean of the onset and offset). For the frequency domain, we
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calculated the frequency centroid (Eq. (5)), as follows:

ft�SPC =

PT
i

PF
j PPC i, jð Þ � jPT

i

PF
j PPC i, jð Þ

ð5Þ

where I and j are the ith time bin and jth frequency bin enclosed within
the boundaries of the t-SPC event. In the phase domain, we calculated
the circular mean of the t-SPC event phases.

Time occurrence. We aimed to quantify the temporal occurrence of
t-SPC events, which we defined as the likelihood of observing at least
one t-SPC event in a given STNneuron-ECoG contact pair during each
time bin and in each frequency band (refer to Fig. S5). To achieve
this, we transformed each t-SPC event into a binarized vector, where
each time-point (at intervals of 5ms) was labeled either as part of a
t-SPC event and assigned a value of 1, or as part of a non-t-SPC period
and assigned a value of 0. We then calculated the mean of these
binarized vectors at each time bin, expressed as a percentage. Higher
values of this quantity indicated a greater temporal aggregation (i.e.,
overlap) of t-SPC over time, whereas lower values indicated disper-
sion. To identify significant time windows of aggregation or disper-
sion, we employed a permutation test, adapting the approach used
to calculate significant beta bursts overlap, as described in ref. 61. We
generated a permutation distribution of the time occurrence due to
chance by setting a variable break point in the 0 s of the binarized
vectors (no slicing of t-SPC events), reversing the two segments, and
joining them together. We repeated this process 500 times and
extracted the permutation distribution over time. We considered
t-SPC events to be significantly dispersed when the time occurrence
fell below the 5th percentile of the permutation distribution and
significantly aggregated when the time occurrence rose above the
95th percentile of the permutation distribution. By applying this
method, we were able to rigorously determine changes in time
occurrence even when the number of t-SPC events was low and to
eliminate spurious trends of aggregation when the number of t-SPC
events was high.

Spatial density. We quantified the spatial density of t-SPC events by
calculating the ratio between the number of t-SPC events and pairs and
expressing it as a percentage, both at the cortical and STN levels (refer
to Fig. S5). To calculate the spatial density on the cortical surface, we
used two region-of-interest-based methods. In the first method, we
identified seven ROIs in the Destrieux atlas123 that satisfied a minimum
coverage criterion (>7 participants and >100 pairs, see Table S3 for
details): PreCG, PostCG, SMG, STG, Middle frontal gyrus (MFG), and
the orbital part of the inferior frontal gyrus (pars O.).We calculated the
spatial density in each region of interest and determined whether
t-SPC events were preferentially located in any region of the brain or
whether they exhibited no spatial preference, both overall and within
frequency band. To test for spatial preference, we created a null per-
mutation distribution (spatial uniform distribution) by shuffling the
spatial label of each t-SPC event 500 times. We then compared the
spatial density of the original data to the 5th–95th percentiles of the
spatial density permutation distribution. Regions with spatial density
below the 5th percentile and above the 95th percentile were classified
as having “low”or “high” spatial preference, respectively. In the second
method, we created a cortical spatial density map by calculating the
spatial density in a spherical region of interest with a radius of 2mm
centered around the ECoG recording locations in theMNI space. These
maps were converted and displayed in SurfIce as nodes. For the STN
domain, webuilt an STN spatial densitymap by locating spheres (1mm
radius) around the STN neuron locations. Again, we used SurfIce for
visualization. For each spatial density map, we identified the peak in
each frequency band. Additionally, we projected the STN neuron
locations onto the three principal directions of the STN extracted from

the DISTAL atlas image124, following the procedure as described in
ref. 83. To preserve the physical meaning, i.e., distance in mm, of the
principal component decomposition, we multiplied the principal
component scores by the standard deviation of the MNI coordinates.
Theprincipal component coordinates (PC1: antero-posterior direction,
PC2: dorso-ventral direction and PC3: medio-lateral direction) repre-
sents a more suitable reference of frame, as the STN is not fully spa-
tially aligned with the MNI coordinates (Fig. S11A, B). Spatial density
computation was repeated for each of the three principal axes using a
size of 0.8mm.

Spike-phase coupling at the single-neuron level (t-SPC index). To
compare the SPC at different epochs of the task or frequency bands
across neurons and to control for the effect of the firing rate (see
“Control analysis”), we computed the ratio between the number of
t-SPC events and pairs for each neuron and expressed it as a percen-
tage across different task epochs and frequency bands (refer to
Fig. S5). We termed this quantity as t-SPC index, and it was used for
correlation analyses in which the statistical unit of observation was the
single neuron. We also assessed the extent to which neurons pre-
ferentially couple to the same frequency band. We normalized the
t-SPC index across frequency bands (total sum= 1) and defined the
frequency specificity as one minus the entropy of the normalized
distribution. With this definition, high (e.g., peaked distribution) and
low specificity (e.g., uniform distribution) are mapped onto 1 and 0
values, respectively (see Fig. 2G).

Spatial aggregation. To extend and further corroborate our findings
in the spatial domain, we also conducted a region-of-interest-free
analysis, both at the cortical and STN levels. MNI and PC coordinates
(and their centroid) of t-SPC events were compared across frequency
bands using a permutation test. We then investigated whether t-SPC
event locations (within each frequency band) were more spatially
aggregated around their centroid than expected by chance (uniform
distribution). To this end, we computed the average Euclidean dis-
tance between t-SPC events locations and their centroid83, and com-
pared against a null distribution of surrogate average Euclidean
distances obtained by randomly sampling recording locations
500 times.

Relationship between STN spike-phase-coupling topography and
DBS anatomical STN targets. To investigate the relationship between
the frequency-specific STN topographies and optimal DBS target for
motor symptom control in PD, we calculated the Euclidean distance
between frequency-wise spatial centroids and the location of DBS
contacts commonly used for therapeutic stimulation63,100.

Time delay analysis. As STN neurons often lock to cortical signals
within a narrow frequency range, power-based estimates of time delay
between STN and cortex might be suboptimal1. We calculated time
delays using the phase-based analysis, as described in ref. 54. First, we
computed the mean preferred phase of units that were significantly
locked in each frequency bin (5–30Hz range). We then averaged these
phases to obtain a grand average phase for each frequency bin. By
analyzing the gradient of these phases, we determined whether the
ECoG channel led (positive sign) or lagged (negative sign) relative to
the STN neuron, and at what latency this occurred. To test the sig-
nificance of the time delay, we repeated 500 times the computation
using randomly selecting mean angles from each frequency bin. To
obtain a p-value, we compared the correlation coefficient in the ori-
ginal data and the 5th–95th percentiles of the correlation coefficient
permutation distribution. In Fig. S17B we calculated the relative time
occurrenceof t-SPCevents in the θ–α and β range and it is quantified as
a contrast (A−B)/(A + B),where A represents the time occurrence of
SPC in the theta/alpha frequency band (red and orange curves in
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Fig. 2F) and B represents the time occurrence of SPC in the beta fre-
quency band (yellow curve in Fig. 2F).

Relationship between spike-phase coupling and speech behavior.
To examine the link between SPC and speech behavior, two sets of
analyses were conducted on phonetic accuracy. We restricted this
analysis only to the low-frequency range (4–40Hz). For phonetic
accuracy, trialswerecategorized into correct (100%) anderror (<100%)
groups. Only significant (from themain analysis) pairswith ≥20 trials in
each condition were included (46 neurons, 827 pairs across 18 parti-
cipants, see Table S5 for details). To balance the number of trials, we
subsampled 20 trials in each condition and ran the SPC pipeline 50
times. SPCmapswere subtracted and averaged across subsamples.We
converted the PPC values into z-scores relative to a permutation dis-
tribution defined as the difference between the permuted values in the
two conditions. Significance was evaluated using the same procedure
as above (see “Spike-phase coupling events”). The significant clusters
in the difference SPC map were referred to as t-SPC events signaling
time-frequency bins in which the first condition was either higher or
lower than the second one according to the sign of the z value. For
statistical comparison at the group level between the two conditions,
we converted the z-scores to t values and generated 500 permuted
samples by randomly permuting the order of subtraction of the two
SPC maps. P values were estimated using the null distribution and
corrected using again a cluster-based procedure.

Control analysis. To further ensure the reliability of the t-SPC events
identified by our cluster-based permutation analysis, we conducted
two control analyses. Firstly, we required that a t-SPC event contain at
least two cycles of oscillation at the centroid frequency to be classified
as reliable, thus ruling out brief and transitory noise-driven clusters.
Secondly, we recognized that surrogate SPC maps generated during
the permutation proceduremay contain surrogate t-SPC events due to
natural cluster tendency arising in small samples of random distribu-
tion, which can be mistakenly identified as non-random. To this end,
we z-scored the surrogate PPC maps and conducted the same cluster-
based permutation, defining surrogate t-SPC events as those that met
the same criteria as the original t-SPC events. We then compared the
number of observed t-SPC events to that of the surrogate t-SPC events.
We also carried out several control analyses to rule out confounding
factors that might have influenced the SPC changes we observed: dif-
ferences in firing rates, differences in ECoG power, and a phase reset
around speech production onset. Although the SPC pipeline is
designed to remove any firing rate bias in the SPC estimation, we
sought to investigate genuine firing rate effects by plotting firing rate
changes against SPC changes across STN neurons. To ensure that
phase estimates were not based on unreliable low amplitude oscilla-
tion (during β suppression), we repeated the analysis and discarded
instantaneous phase samples in which the instantaneous power fell
below the 10th percentile. We also checked whether bouts of oscilla-
tory power (during θ and γ increase) biased the SPC estimation by
discarding instantaneous phase samples in which the instantaneous
power rose above the 90th percentile. We further explored the influ-
ence of power magnitude on SPC by examining changes in power
during speech production in ECoG contacts, with a specific focus on
the θ–α bands in relation to SPC. We categorized ECoG contacts into
six groups (No-SPC, SPC in any band, θ–α SPC, β SPC, γL SPC, and γH
SPC) and compared the speech-locked powermodulationwith respect
to thebaseline across frequencybands (θ,α,β, γL, γH) and corticalROIs.
To ensure balanced comparisons, we included only conditions with at
least 20 ECoG contacts and estimated the distribution of the mean by
resampling 20 ECoG contacts 500 times. We examined the impact of
phase resetting on brain oscillations, which can generate event-related
activity. To this end, we run two complementary analyses. First, we
aligned all the trials to the speech production onset, averaged the

ECoG signals across trials to obtain evoked activity, and subtracted this
component from individual trials before conducting the SPC analysis.
Second, we quantified whether auditory cue or speech production
onset reset the phase of the ECoGoscillations.We estimated the event-
locked SPC the same way as the SPC, except that ECoG segments were
aligned at the auditory cue and speech production onset. Each trial
thus contributed one spike to the SPC computation.

Statistical analysis.We used the RainCloud library for the visualization
of data distributions135. Kolmogorov-Smirnov test revealed that the
normality assumption of the distribution was rarely satisfied. For this
reason, we decided to apply a series of permutation tests (1000 per-
mutations unless stated otherwise) throughout the manuscript when-
ever the definition of a null distribution was methodologically justified.
An exception is represented by circular data (e.g., phases) that required
the usage of the CircStat toolbox130. When multiple pairwise permuta-
tion tests were applied over different ROIs (e.g., Figs. 3A and S10) or
frequency bands (e.g., Figs. S7 and S9A, B and Source Data), we con-
trolled the family-wise error rate by applying the t-max correction136,
also referred to as joint correction. This correction works as follows137:
on each permutation of the data, the test statistic is computed for each
comparison and the most extreme value (either positive or negative)
across comparisons is taken. Repeating this procedure multiple times
produces a single, more-conservative permutation distribution, against
which the actual test statistic is compared. All results were assessed at a
statistical significance of α =0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data of this study is hosted in the Data Archive BRAIN Initiative
(DABI, https://dabi.loni.usc.edu/dsi/1U01NS098969) and is available
upon request. No participant-identifiable information will be dis-
closed. Thedatasets generated and/or analyzed and the statistical tests
used during the current study are attached as Source Data files. Source
data are provided with this paper.

Code availability
Example code to reproduce the main results is published at Github
(https://github.com/Brain-Modulation-Lab/code_SPC_ECoG_STN_
Speech) and Zenodo138 (https://doi.org/10.5281/zenodo.12610957).
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